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Abstract

Numerous cities have enacted electronic monitoring programs at traffic

intersections in an effort to reduce the high number of vehicle accidents.

The rationale is that the higher expected fines for running a red light will

induce drivers to stop and lead to fewer cross-road collisions. However,

the cameras also incentivize drivers to accept a greater accident risk

from stopping. We evaluate the termination of a monitoring program

via a voter referendum using 12 years of geocoded police accident data.

We find that the cameras changed the composition of accidents, but no

evidence of a reduction in total accidents or injuries.
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1 Introduction

The automobile is a killer. In the United States, 36,675 people died in traffic

accidents in 2014. The year before, 2.3 million people were injured in traffic

accidents (Economist [2015]). In urban areas, by far the most likely location

for an accident is at a traffic intersection. Figure 1 shows annual accident

rates for the city of Houston from 2003-2014 by 100-foot intervals from an

intersection. Roughly three times as many accidents happen within 200 feet

of an intersection than at any other distance.1

Over 438 communities in 23 states, including 36 of the 50 most populous

US cities, have employed electronic monitoring programs in order to enforce

traffic laws at intersections and to reduce the number of accidents (IIH [2016]).

Red-light camera programs specifically target drivers that run red lights. The

assumption is that by incentivizing fewer drivers to run red lights via a dra-

matically higher probability of being caught, the total number of accidents

will decline.

As a rule, law enforcement officials favor red-light camera programs and

testify to their effectiveness. For example, the executive director of the Gover-

nors Highway Safety Association (GHSA) recently endorsed “the use of auto-

mated traffic enforcement technology, including red-light cameras, to improve

safety for all road users. [...] It is mind-boggling that these proven safety tools

are being removed despite numerous research studies validating their safety

benefit” (GHSA [2016]).2

Red-light camera programs (hereafter “camera programs”) are distinct

from other crime-reduction methods, for crime prevention is not an end in

itself, but serves as a mechanism to accomplish a broader policy goal. There is

clear evidence that installing a camera reduces the number of vehicles running

1The actual difference is likely much greater, as the figure does not control for the fact
that many of the accidents outside of 200 feet of the reference intersection may be within
200 feet of another intersection.

2According to their website, the “GHSA provides leadership and representation for
the states and territories to improve traffic safety, influence national policy, enhance
program management and promote best practices” http://www.ghsa.org/resources/

state-highway-safety-group-supports-red-light-cameras.
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a red light. Still, the predicted relationship between the number of vehicles

running red lights and the total number of accidents remains ambiguous.

A simple economic model shows that electronic monitoring via a red-light

camera has contradictory effects, in terms of traffic safety. First, some drivers

who would have otherwise continued to proceed through the intersection when

the light is yellow or red will now attempt to stop. The number of accidents

caused by vehicles not stopping at a red light will likely decrease (i.e., angle

accidents). Second, the number of accidents from stopping at a red light is

likely to increase (i.e., rear-end accidents). The reason is that driver awareness

of the cameras will lead some drivers to attempt to stop and accept a higher

accident risk from stopping at the intersection, in order to avoid the expected

fine from continuing through the intersection. Thus, the overall effect of the

electronic monitoring on vehicle accidents and injuries depends on the net

composition of the two effects. Overall driver safety could increase or decrease.

The main challenge in evaluating the effectiveness of camera programs is

how to account for the endogenous start time and location of the cameras.

This challenge is an example of the now well-known problem that undermined

many early tests of Becker’s deterrence hypothesis regarding the probability of

being caught and the reduction of crime (Becker [1968]).3 For example, early

empirical studies that tested whether an increase in policing intensity reduced

crime often failed to detect any effect (e.g., Levitt and Miles [2006] and Chalfin

and McCrary [2017] provide reviews). The change in the likelihood of being

caught is often endogenous to the level of crime, which leads to a bias of finding

no correlation (e.g., Levitt [1997]).

In the context of a camera program, the endogeneity problem likely leads

to over-estimates of the program’s effectiveness. Intersections chosen for cam-

eras are not selected randomly. Intersections assigned cameras are often more

dangerous (e.g., poor traffic flow, high traffic volume) than other intersec-

tions. Moreover, intersections with unusually high accident levels in the year

just prior to the start of the program may be more likely to receive cameras.

3Interestingly, traffic crimes, while not a common setting to study Becker’s deterrence
predictions, is a specific crime highlighted in Becker [1968], p2.
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These same intersections are, in turn, regardless of intervention, more likely to

revert to lower accident levels (mean reversion). We avoid concerns about the

endogenous selection of intersections by examining the impact of the exogenous

removal of cameras via a voter referendum.

We analyze whether electronic monitoring via red-light cameras is effec-

tive at reducing accidents and improving public safety in Houston, TX. We

chose Houston as the empirical setting of our study because it is a large US

city that had a large camera program unexpectedly shut down due to a voter

referendum. Houston established a camera program in 2006 that grew to in-

clude 66 intersections. Houston residents narrowly passed a voter referendum

in November 2010 that banned the cameras. Both the Houston police depart-

ment and the mayor’s office opposed the ban (e.g., Oaklander [2011]). After

the referendum, the city immediately shut off the cameras.

We estimate a difference-in-differences model using Poisson regression and

the complete police record of geocoded accident data for a 12-year period

(2003-2014). We estimate models that separately examine the effect of the

camera program on four types of accidents: angle, non-angle, total, and in-

jury accidents. Angle accidents comprise about a third of the total number

of accidents at a typical intersection and are the primary target of the pro-

gram (Retting and Kyrychenko [2002]). If electronic monitoring in Houston is

successful at improving traffic safety, then we expect that the removal of the

cameras would lead to an increase in the number of total accidents and injury

accidents at camera intersections, relative to control intersections not subject

to the referendum.

The estimates for angle and non-angle accidents support the predictions of

the economic model. Our preferred econometric model uses a within Houston

control group of intersections without cameras. We select the Houston control

intersections by estimating the propensity to have a Houston camera using a

logit model that includes pre-referendum accident-related characteristics that

have been cited as important criteria in selecting camera intersections (Dallas

Police Department [2016]; Chicago Red-Light Enforcement Program [2016];

Stein et al. [2006]). We estimate that angle accidents increased by 26% and
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all other types of accidents decreased by 19%, once the cameras are removed.

We can statistically reject that the coefficients are equal.

Overall, we find no evidence that cameras reduce the total number of ac-

cidents or injuries. We estimate a statistically insignificant reduction in to-

tal accidents (-4%), and a negative, statistically insignificant change in the

number of injury accidents after the camera program ends. We adapt the

model of Chalfin and McCrary [2018] to interpret how electronic monitoring

at traffic intersections affects social welfare. Using our estimates for changes

in the types of injuries incurred in traffic accidents (fatalities, incapacitating,

non-incapacitating, possible, no injury), the model suggests that the camera

program led to a decrease in social welfare.

One potential identification concern for our econometric model is that cam-

eras could affect driving behavior at non-camera intersections in the city (e.g.,

Høye [2013]; Shin and Washington [2007] Wong [2014]). For example, drivers

may alter their routes to avoid camera intersections. If this were the case, traf-

fic volume at the non-camera intersections would increase and thereby bias our

model estimates towards finding larger beneficial effects of the program. We

test for a change in average daily traffic measured at the intersections in our

main sample and find suggestive evidence of a small increase in traffic at non-

camera intersections. We also consider a second, out-of-city control group,

the camera intersections of Dallas, which were not subject to the referendum.

Model estimates using the Dallas control group confirm our main results.

The camera program as a policing tool is a key topic in transportation and

safety journals (e.g., Erke [2009], Høye [2013], and Goldenbeld et al. [2019]

provide reviews), but the economics literature on this topic is scant, at best

(Chen and Warburton [2006] and Wong [2014] are exceptions). Most studies ei-

ther compare city-level accident data between cities with and without cameras

(e.g., Hu and Cicchino [2017]), or focus on a very small number of intersec-

tions. Nearly all of the intersection-level studies use “empirical bayes” (Hauer

[1997]) as an estimation approach. The idea of the empirical bayes model is

that traffic model estimates from a group of out-of-sample intersections can be

used to correct for mean reversion at camera intersections. The key modeling
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step is to linearly combine the actual number accidents at camera intersections

with the predicted number of accidents from the out-of-sample intersections.

We show that the empirical bayes estimates still suffer from mean reversion

and will overestimate the beneficial safety effect of camera programs.

In contrast to the existing literature, we use the exogenous shutoff of the

traffic cameras as a natural experiment. We conclude that the traffic safety

benefit of camera programs is much smaller than the consensus view in the ex-

isting transportation and engineering literatures. In the case of Houston, our

preferred estimates suggest that the change in social welfare from implement-

ing the camera program was negative. More generally, our study highlights

the challenge of using policy tools to deter crime in situations where potential

offenders face multiple, offsetting risks.

2 Driver Behavioral Model

Becker’s model of crime predicts that the fraction of drivers breaking the law

and running a red light will decrease when the expected penalty for running a

red light increases (Becker [1968]). Driver i approaches intersection j at time

t as the signal light turns from green to yellow. The driver decides whether

to attempt to stop or to continue and proceed through the intersection. A

driver will choose (potentially) to run a red light if the expected utility from

continuing exceeds the expected utility of stopping. Equations (1) and (2)

model the utility from continuing to drive and attempting to stop, respectively.

Cijt = u(Tijt, Fijt, Aijt, ξijt;Dijt) (1)

Sijt = u(Aijt, ψijt;Dijt) (2)

The benefit of continuing is assumed to largely be due to Tijt, the travel

time savings of not having to wait at a red light, which can vary by driver (e.g.,

hourly salary), intersection (e.g., length of red-light phase of traffic signal), and

time of day (e.g., whether the driver is commuting to work). The anticipated
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fine, Fijt, depends upon the likelihood that the driver’s vehicle passes through

the intersection before the light turns from yellow to red, the probability of

receiving a ticket if the vehicle is in the intersection after the light turns red,

and the size of the fine. Aijt is the cost of an accident and enters both utility

functions. Aijt depends on the probability of being in an accident and the

monetized vehicle damage and injury costs conditional on being in an accident.

Finally, ξijt and ψijt represent all other factors that would affect a driver’s

utility of continuing and stopping (e.g., willingness to break the law). All

of the factors discussed above are conditional on the distance, Dijt, that the

driver is from the intersection when the light turns yellow.

2.1 Number of Vehicles Running Red Lights

A camera decreases the utility of continuing through the intersection after the

light turns yellow by increasing Fijt via a dramatic increase in the probability

of receiving a ticket. The probability of receiving a ticket for running a red

light at an intersection without a camera remains low, for it requires a police

officer to witness the infraction. The probability of receiving a ticket when

there is a camera at the intersection is close to 100%.

One general challenge in evaluating how potential offenders respond to a

deterrent is that the perception of being caught might not reflect the proba-

bility of being caught (e.g., Waldo and Chiricos [1972]; Apel [2013]; Chalfin

and McCrary [2017]). An advantage of studying the deterrence effect in the

context of camera programs is that we can confirm a change of perception

among drivers after a camera is installed.

In the first year after the end of electronic monitoring, the number of

red-light-running tickets issued citywide (17,282) barely exceeded the number

of tickets issued at a single intersection (17,055) in the final fiscal year of

Houston’s camera program. Figure 2 panel A plots the average number of

tickets per fiscal year for Houston camera intersections. The number of tickets

issued dropped by 99.9% in the year after electronic monitoring ended.

Previous studies use direct observations of driver behavior to confirm that
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the number of vehicles running a red light at an intersection declines after

a camera is installed (e.g., Martinez and Porter [2006]; Porter et al. [2013];

Erke [2009]; Retting et al. [2003]).4 The total number of tickets issued at

camera intersections also supports the prediction of a decrease in red-light

running after a camera is installed. In general, the number of tickets issued

for running a red light at a camera intersection peaks immediately after the

installation of the camera and then begins to decline as drivers learn about the

camera and adjust their behavior. Figure 2 panel B plots the average yearly

number of citations per intersection by year of operation for Dallas camera

intersections. On average, in the first year of a camera-monitored intersection,

more than 6,000 citations are issued. In the second year of operation, there

are about 66% fewer tickets issued.5

2.2 Number of Total Accidents

The policy objective of electronic monitoring is to decrease the number of

total accidents and related passenger injuries. While there is clear evidence

that installing a camera reduces the number of vehicles running a red light,

the predicted relationship between the number of vehicles running red lights

and the total number of accidents is ambiguous.

Right-angle crashes between two vehicles are likely to decrease under elec-

tronic monitoring. Some drivers who typically ran a red light before a camera

program will choose to stop at the intersection and, in turn, fewer vehicles will

be in the intersection when the cross-road light turns green. In fact, the ex-

plicit goal of most camera programs is to reduce the number of total accidents

through a reduction in angle accidents (Erke [2009]).

At the same time, electronic monitoring is likely to increase other types

4Martinez and Porter [2006] conclude that the incidence of red-light running fell by 67%
during the eight months immediately after the camera installation. In a follow-up study,
Porter et al. [2013] estimate that the incidence of red-light running begins to return to
the pre-camera levels immediately after the removal of the cameras, and that a year after
removal the rate of running a red light is similar to before the camera was installed.

5We are unable to produce a similar figure for Houston because we are only able to access
intersection level citation reports for two years of Houston’s program (2008-9 and 2009-10).
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of accidents.6 Here we consider four reasons. First, drivers will now accept

a higher accident-related cost from attempting to stop. The marginal driver

will choose to stop and accept the greater risk of a non-angle accident, along

with the associated costs, provided that these costs are less than the expected

fine. Second, a lengthy transportation and engineering literature documents

the role that changes in speed (rather than speed levels) have on accident rates

(e.g., Gazis et al. [1960]; Hurwitz et al. [2011]).7 Even if the driver changing

speed can do so safely, other drivers may not be able to react in time to avoid

an accident. Notably, neither of these first two reasons depend on imperfect

information or calculation errors by the driver.

Third, if there is uncertainty over the stopping distance (e.g., poor weather

conditions, driver unfamiliarity with the intersection), then the increase in the

fine under a camera program may incentivize drivers to attempt to stop when

it would be safer to continue. Fourth, drivers may simply miscalculate. The

decision to stop or continue is a split-second decision. For example, knowledge

of the cameras (perhaps cued by the posted signs), could lead some drivers’

first impulse to be to stop even when it would be safer to continue through

the intersection (Kapoor and Magesan [2014]).8

The overall effect of a camera program on the total number of accidents

will depend on the relative magnitudes of those accident types that are likely

to decrease and those that are likely to increase. One advantage of the accident

6In our main analysis, we divide accidents into two groups (angle and non-angle). There
are several reasons why we prefer this (somewhat coarse) division of accidents. First, camera
policies explicitly target angle accidents. Second, the driver behavioral model predicts that
there will be an increase in “other” types of accidents, but does not provide a prediction for
exactly which types. We are not traffic engineers and do not feel that we have the expertise
to tailor the prediction to a select subset of accident types. At the same time, we are also
skeptical that the traffic engineering models are sufficiently reliable to do this.

7Gazis et al. [1960] model the distance required for a vehicle approaching a traffic inter-
section to safely decelerate and stop. Gazis et al. [1960] show that there will always be a
“dilemma zone” under the Federal Highway Administration guidelines that recommend a
yellow light duration of three to six seconds (Administration [2009]). The dilemma zone is
the area proximate to an intersection where a driver can neither safely stop nor pass through
the intersection without accelerating before the light turns from yellow to red.

8Kapoor and Magesan [2014] show that the introduction of pedestrian crosswalk count-
down signals that are also visible to drivers have the unintended effect of increasing the
number of vehicle accidents.
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data discussed in Section 4.2 is that all accidents are categorized into a detailed

list of accident types. We are able to estimate the effect of a camera program

on total accidents, as well as the effect on specific accident types.

3 Previous Literature

Appendix Table 1 lists information for 21 recent camera studies that were

published in the last ten years. This list is largely based off of the studies in-

cluded in the meta-analyses by Høye [2013] and Goldenbeld et al. [2019]. All

of the studies in the table estimate the causal effect of the cameras from the

camera installation, while three also estimate the causal effect when cameras

are removed (Hu and Cicchino [2017]; Ko et al. [2017]; Pulugurtha and Otturu

[2014]). All but one of the 16 peer-reviewed studies are published in engineer-

ing or transportation journals (Langland-Orban et al. [2014] is the exception).

Most also examine how cameras affect accident sub-categories and typically

focus on right angle and rear end accidents. The appendix includes a detailed

discussion of several prominent camera studies.

The general consensus of the current literature is that cameras are effective

at reducing accidents and accident injuries. Goldenbeld et al. [2019] consider

studies published since Høye [2013] and conclude that cameras reduce total

accidents by 12%. Goldenbeld et al. [2019] only include studies in the meta-

analysis that are “methodologically sound” (p140). Fourteen of the 18 studies

in Goldenbeld et al. [2019] use the empirical bayes (EB) method. In our view,

problems with the methodological approach of the current literature, and the

EB model in particular, have led to the unfounded conclusion that cameras

improve public safety.

The empirical bayes model is the standard model used in intersection-

level camera studies (e.g. Abbess et al. [1981]; Hauer [2006]; Hauer [1992];

Hauer et al. [2002]). It is widely claimed that the EB model corrects for mean

reversion, while also improving statistical precision.9 Mean reversion is likely

9The EB model has become largely associated with Ezra Hauer. Hauer et al. [2002] states:
“The empirical bayes (EB) method for the estimation of safety increases the precision of
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to occur as cameras are often placed at intersections that experienced high

accident levels in the years immediately before the start of the program.

The empirical bayes model has two significant drawbacks that together

make it very unlikely to produce unbiased causal estimates. First, empiri-

cal bayes is a “model-driven approach” that relies on estimating the precise

“structural relation” between accidents and the road characteristics that cause

accidents (Angrist and Pischke [2017], p1). The first step is to estimate the

“safety performance function” (SPF) on an out-of-sample group of intersec-

tions. The estimated parameter values from the SPF are then applied to

the camera intersections to obtain the predicted number of accidents. These

accident predictions are susceptible to bias from model misspecification. In

practice, the SPF often includes a small number of intersection characteristics

such as average daily traffic, number of lanes, speed limit, lane width, and

right-turn-on-red prohibition (e.g. Lord and Greedipally [2014]; Mahmassani

et al. [2017]). Several recent papers use only average daily traffic to model the

SPF (e.g. Ko et al. [2013]; Pulugurtha and Otturu [2014]; Ko et al. [2017]).

The second major drawback is how the model corrects for mean reversion.

The key methodological step is to take a weighted average of the predicted

and actual number of accidents in the post-treatment period. This weighted

average, which is supposed to correct for mean reversion, is then subtracted

from the level of pre-program accidents at the same camera intersections to de-

termine the camera policy treatment effect. The weighting formula is selected

to minimize the variance of the empirical bayes estimator (Hauer [1997]). This

typically leads to a very large weight on the actual intersection accident data,

and as a result, does little to correct for mean reversion. The model would

only eliminate mean reversion (when it exists) if all of the weight is on the

predicted number of accidents.

The appendix includes a lengthy discussion of the empirical bayes model.

estimation and corrects for the regression-to-mean bias” (p126). Persaud and Lyon [2014]
write that “the empirical Bayes (EB) methodology has been applied for over 20 years [...]
The appeal of the methodology is that it corrects for regression to the mean” (p1). Høye
[2013] writes: “Since no obvious weaknesses in the application of the EB method were found,
all of these studies can be assumed to be largely unaffected by [mean reversion]” (p81).
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In particular, we run a Monte Carlo simulation where we randomly generate

accident data and evaluate a placebo camera program. The placebo cameras

are assigned to intersections that randomly have a high number of accidents in

the years before the program. The empirical bayes model treatment estimates

imply that the introduction of placebo cameras lead to a statistically significant

reduction in total accidents. This is true regardless of how well the structural

performance function models the true accident generating process.

In summary, the EB model’s failure to correct for mean reversion and

the model’s emphasis on statistical precision together can account for the

large number of studies that conclude camera programs reduce intersection

accidents. In contrast to the current literature, our empirical strategy follows

a “design-based” econometric approach (Angrist and Pischke [2017]) that does

not rely on correctly modeling the entire accident generating process.

4 Background and Data Sources

4.1 Houston and Dallas Camera Programs

All camera programs share several characteristics. A camera is installed in a

location where it can take photos (or video) of vehicles as they pass through

the intersection. The camera is positioned so that photos include the vehicle

in the intersection and its license plate. Photos of all vehicles captured passing

through the intersection are to be reviewed by city employees, a contractor, or

both, in order to verify that the light is red and that the license plate is clearly

visible. Tickets are then sent to the home address of the individual who reg-

istered the vehicle. The main characteristics on which camera programs differ

include whether signage identifies a camera-enforced intersection, whether the

cameras are permanent fixtures or are mobile units, and whether the cameras

also monitor vehicle speed and issue speeding tickets.

Houston first approved the installation of red-light cameras in 2004 and

installed 20 cameras in 2006 and 46 in 2007 (Hassan [2006]). Approximately

800,000 $75 tickets were issued from 2006 to 2010 for a total of about $44
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million collected (Olson [2010]). The first 33 Dallas cameras were installed

in 2007, along with 22 more between 2008-2011. The Dallas program also

issued $75 fines, and in fiscal year 2008-9 gave out 129,000 tickets. In Houston

and Dallas, programs included posted signs advising drivers of the cameras,

permanently placed cameras, and issued tickets only for red-light infractions.

The Dallas camera program remained in place throughout our panel.

In November 2010, Houston residents voted 53% to 47% in favor of a

referendum to remove the cameras. The referendum was organized by citizens

who opposed the camera program on the grounds that the cameras were mainly

a revenue-raising policy. At the time of the referendum, a majority of members

on the Houston City Council approved of the program, as did the Houston

Police Department (Board [2010]; Olson [2010]; Oaklander [2011]). After the

voter referendum, Houston immediately shut off the cameras and began legal

proceedings with the private sub-contractor that administered the cameras

(Jensen [2010]). In July 2011, a judge ruled that Houston had breached its

contract (which was set to run through 2014) and the cameras were briefly

turned back on. One month later, the Houston City Council voted to repeal

the original law that authorized the usage of the cameras (Garrett [2011]). All

lawsuits related to the removal of the cameras were settled by January 2012

(Houston Mayor’s Office [2012]).

Figure 3 shows that Houston residents were well aware of the referendum.

The three panels display the counts of newspaper stories (top), broadcast news

stories (middle), and Google online search interest (bottom) in red light cam-

eras as compared to Houston’s newly elected mayor. Annise Parker, Houston’s

first openly LGBT mayor, was elected in a run-off election 11 months before

the referendum in December 2009. The top two panels plot the number of

monthly news stories in the month of the referendum (month 0) and in each

of the 24 months before and after the referendum. New stories include the

phrases “red light camera” or “Annise Parker.” The bottom panel shows the

Google trends measure of interest in the same two terms. A value of 100 indi-

cates peak popularity, whereas a score of 50 means the term is half as popular.

The spikes in the number of news stories and online searches related to red
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light cameras at the time of the referendum are roughly comparable to those

for Annise Parker at the time of her election.10

4.2 Data Sources

4.2.1 Intersection Information

We use information on camera intersections from the annual (fiscal year) cam-

era intersection reports of the Texas Department of Transportation (TxDOT)

(2009-16). The earliest available reports are from 2009. These reports are

compiled and published by the state of Texas using information submitted

by municipalities. Each municipality with a camera program is required to

submit annual information on each camera, including: the date of installa-

tion, intersection speed limits, total tickets issued, and an estimate for the

average daily traffic (ADT). Unfortunately, the Houston report for 2010-11,

which covers the last four months of the camera program, was not published.

Another data limitation is that ADT is measured only once at most of the

camera intersections and not updated annually.

We also collect ADT information from two other sources that provide traffic

counts in Houston and Dallas at numerous street locations (City of Houston

[2017] and North Central Texas Council of Governments [2016]). The use

of street-based (rather than intersection-based) ADT information allows us

to have a consistent ADT measure for camera and non-camera intersections

in each city. Intersections are assigned ADT values using GIS software by

summing the ADT values for all roads at the intersection. The appendix

includes details regarding the ADT calculation.

Finally, we collect information on a number of structural intersection char-

acteristics, including whether one or more of the streets at the intersection has

a median separating traffic, the speed limit, the number of lanes, and whether

the intersection includes a frontage road. A frontage road runs parallel to a

10The source of the newspaper stories is the Houston Chronicle. The broadcast news
stories are from closed captioning data provided by Metro Monitor and cover Houston’s
ABC, CBS, FOX, and NBC affiliates.
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highway and often provides an access point to the highway.11

4.2.2 Vehicle Accidents

The 2003-2014 accident data from the TxDOT Crash Records Information Sys-

tem (CRIS) includes all reported motor vehicle traffic accidents in the state

(TxDOT [2004-16]).12 The accident data retained in CRIS are from crash re-

ports filled out by law enforcement personnel. CRIS includes information on

the location of each accident (latitude and longitude coordinates), type of ac-

cident (e.g., right-angle), driver behavioral information (e.g., drugs or alcohol

detected, whether the driver ran a red light), accident injury information, and

the weather at the time of the accident. The 2010-2014 CRIS data include the

month and year of the accident, while the earlier data include only the year.

We use GIS software to identify accidents that occur within 200 feet of an

intersection and within 50 feet of a road for all Houston intersections and all

Dallas camera intersections. Recall that figure 1 indicates much higher acci-

dent rates within 200 feet of an intersection. We further restrict our sample

to those accidents where law enforcement personnel determined that the ac-

cident was “in or related to” an intersection, rather than an adjacent parking

lot, for example. We define these accidents as “intersection accidents.” We

only include intersection accidents in our main estimation panels.

Table 1 shows average yearly accident statistics for Houston for the three

years before the start of the camera program (2003-2005). Panel A displays

statistics for all accidents, while panel B only displays statistics for intersection

accidents in our main Houston panel. We calculate each statistic separately

for all accidents, angle accidents, and non-angle accidents. We define “angle

accident” as an accident type listed in CRIS that includes the word “angle.”

11Intersection characteristics were collected using Google Maps, Google Mapmaker, and
Waze from June-July 2016. The dates of the images used to collect the data roughly match
the end of our panel period.

12The 2010-2014 data were downloaded via the TxDOT online database. CRIS data prior
to 2010 are no longer retained by TxDOT. CRIS data for the years 2003-2009 were obtained
via an open records request under the Texas Public Information Act from The University
of Texas at Austin Center for Transportation Research.

14



There are 45 accident types listed in CRIS, of which ten include the word

“angle.” The appendix includes a complete list of accident types.13

Of the 77,000 accidents per year in Houston, 34% are in or related to an

intersection. The proportion of angle accidents is larger among intersection

accidents than for all Houston accidents (39% versus 21%). On average, there

are 231 fatalities per year. Overall, the likelihood of being killed in an in-

tersection accident is higher for non-angle accidents than for angle accidents

conditional on each accident type.

The CRIS database includes six accident injury designations: fatality, inca-

pacitating, non-incapacitating, possible, unknown, and none. The categories

are mutually exclusive. If multiple individuals are injured in an accident, then

the accident designation corresponds to the most severe injury. The database

includes pedestrians injured by a vehicle accident.

The probability of incurring a non-fatal injury from an intersection accident

is greater for individuals involved in angle accidents than in non-angle acci-

dents. There are approximately twice as many incapacitating angle accidents

than non-angle accidents at an intersection (0.029 versus 0.015). Moreover,

the fraction of non-incapacitating injury accidents among angle accidents is

0.121, whereas for non-angle accidents it is 0.065. Given that intersection

angle accidents are more dangerous than intersection non-angle accidents, a

change in the composition of the types of accidents could have important wel-

fare implications, even if there is no effect on the total number of accidents.

Figure 4 plots the average total number of vehicle accidents per intersection

by year from 2003-2014. Panel A plots accident levels for the 66 Houston

camera intersections in our study, as well as Houston intersections with ADT

data and at least one accident during our panel that did not have a camera.14

Panel B plots accident levels for two groups of intersections in San Antonio,

a city without a camera program. We separately plot the 66 most dangerous

intersections from 2003, along with all other San Antonio intersections with

13Each of the ten angle accident types include a more precise description. The most com-
mon angle accident is “Angle: Both Going Straight,” which involves 78% of angle accidents.

14We combine the 20 cameras installed in 2006 and the 46 installed in 2007 into one plot.
Separate plots for the 2006 and 2007 cameras are very similar.
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ADT data and at least one accident during our panel. The most dangerous

intersections are determined by assigning each intersection a risk score based

on the weighted average of the number of deaths, incapacitating injuries, non-

incapacitating injuries, and non-injury accidents from 2003.15

Panel A provides initial evidence that the introduction of cameras in Hous-

ton, and the subsequent removal of the Houston cameras, had no discernible

effect on the number of total accidents. If the camera programs are effective

at reducing accidents, then we would expect to see a reduction in the number

of accidents beginning in the year after cameras are installed (and perhaps

during the year of installation). The figure shows no clear trend break in 2006

or 2007 at the time of the camera installations. The average number of in-

tersection accidents peaks in 2003 for the Houston camera group, and then

decreases at roughly a constant rate from 2005-2008. There is also no clear

evidence that ending the program in 2010 led to an increase in the number of

accidents. The timing of the increase for the Houston camera group does not

correspond with the program end date. Moreover, the overall increase for the

Houston camera group towards the end of the panel is similar in magnitude

to that of the San Antonio placebo camera group. This suggests that other

regional or temporal factors, and not a change in electronic monitoring, are

responsible for the slight up-tick in accidents in 2012 and 2013.

Panel A also shows two other facts regarding the Houston camera inter-

sections. First, on average, the Houston camera intersections are more dan-

gerous than the Houston non-camera intersections. The average number of

total accidents during this period is about five times larger at Houston camera

intersections. Second, the Houston camera locations appear to have been cho-

sen based on an unusually large number of accidents in the years prior to the

program, and in particular, the number of accidents in 2003. This conclusion

is supported by a memo to the then Chief of Police in early 2006 in which

15This weighting scheme is the same as that used to evaluate intersections by Stein et al.
[2006], except that it is applied only to accidents from one year. See Appendix for details.
Stein et al. [2006] were asked by the Houston Police Department to recommend potential
intersections for red-light cameras, and provided a list of 100 intersections based on three
years of accident data. Only six of these intersections were selected.
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Stein et al. [2006] advise against using the “Houston Police Department 2003

database” to select camera intersections, as a “longer time period will provide

more reliable information on collision causes” (p1).

Panel B shows that the most dangerous intersections in San Antonio from

2003 display a similar accident pattern as the Houston camera intersections,

even though San Antonio never had a camera program. There is approximately

a 50% reduction in the number of accidents from 2003 to 2010 in both Houston

and San Antonio. Figure 4 highlights the challenge in evaluating the effect of

electronic monitoring when camera intersections are positively selected on the

number of accidents. A simple difference-in-differences model based around the

start of the Houston program would over-estimate its effectiveness at reducing

accidents relative to the Houston no camera group. The same is true for the

empirical bayes model (see Section 3 and the Appendix). For this reason, our

focus is on the unexpected removal of the cameras.

5 Selecting the Samples

We run two main empirical models. The first model estimates the likelihood

that a Houston intersection receives a red-light camera. Below we discuss how

we use propensity score estimates from the first model to select our treat-

ment and control groups. The second model, as discussed in section 6.1, is

a difference-in-differences model that exploits the timing of the referendum

that shut off the Houston cameras to estimate the causal effect of electronic

monitoring on traffic accidents, injury accidents, and traffic patterns.

The intersections considered for our estimating sample in our differences-

in-differences model are summarized in table 2. Our treatment group includes

all Houston camera intersections. We use two control groups. The first con-

trol group uses Houston intersections that never had a camera and meet our

screening criteria (hereafter “Houston sample”). Dallas camera intersections

make up the second control group (Panel B). The Dallas camera intersections

are not subject to the referendum (hereafter “Houston-Dallas sample”).

The screening criteria for the within Houston control group is as follows.
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First, the control intersection includes at least one intersection-related acci-

dent from 2003-2014. We condition on having at least one accident in order to

rule out infrequently traveled intersections. This restriction may also exclude

intersections that, for whatever reason, appear to be extremely safe and are

thus not comparable to camera intersections. Second, the control intersection

cannot be within one-half mile of a camera intersection. Previous research

suggests that driver reaction to a camera intersection could affect driving be-

havior at other intersections in close proximity (Høye [2013]; Shin and Wash-

ington [2007]; Wong [2014]). We further require that the intersection have

non-missing ADT data for each direction at the intersection. We use the ADT

data to control for vehicle traffic levels, and to test whether traffic patterns at

camera intersections change after the installation of a camera.

Next we run a logit model to estimate the likelihood that an intersection

would be assigned a Houston camera. As described in further detail below, we

use the propensity score estimates from the logit model to determine our final

treatment and control samples. We specify our preferred logit model as

yi = α + Aitγ + ui, (3)

where the dependent variable yi ∈ (0, 1) is the estimated probability that in-

tersection i is a Houston camera intersection. Ait is a vector of pre-referendum

intersection traffic accident information, α is an intercept, and ui is an error

term which is assumed to have a standard logistic distribution. The pre-

referendum years are 2008-2010. The variables included in the vector Ait

are motivated by the previous literature and by documents that outline the

camera intersection selection process (Dallas Police Department [2016]; Chi

[2016]; Stein et al. [2006]). Ait includes the yearly accident rate at the inter-

section for each pre-referendum year t, for right angle, non-right angle, and

injury accidents. Ait also includes a variable for red-light-related accidents for

each pre-referendum year, and one pre-referendum ADT observation for the

Houston sample.16 ŷi corresponds to each intersection’s estimated likelihood,

16The 2010 data do not include accidents from November and December. We use a
more parsimonious logit model for the Houston-Dallas sample that excludes the ADT and
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or propensity score, of being a Houston camera intersection (Rosenbaum and

Rubin [1983]). The propensity score for the Houston-Dallas sample represents

the probability that an intersection with those characteristics would be located

in Houston.

We use the propensity score to trim the treatment and control groups in

each of our samples. We follow Imbens and Wooldridge [2007] and use a simple

0.1 rule to drop observations from our sample if the propensity score is outside

of the interval [0.1, 0.9]. Appendix Figure 1 shows the distribution of propen-

sity scores in our two main samples. The overlap in the propensity scores for

the treatment and control intersections is best for the Houston sample.

Table 2 shows how intersection accident and traffic characteristics vary be-

tween our control and treatment groups before and after the sample is trimmed

using the propensity score. The top panel displays intersection characteristics

for the Houston sample, and the bottom panel for the Houston-Dallas sample.

Column 3 shows the difference in mean intersection characteristics between

the pre-trimmed treatment group (column 1) and control group (column 2),

normalized by the standard deviation. This approach to evaluating the differ-

ences in means allows for a comparison that is not affected by the sample size

(Imbens and Wooldridge [2007]). We follow Imbens and Wooldridge [2007] and

consider the sample to be well-balanced for a characteristic if the difference is

less than 0.25 standard deviations. Columns (4)-(6) repeat the same format

as the first three columns for the propensity score trimmed samples.

The Houston sample is not well-balanced in any of the accident character-

istics before trimming. The non-trimmed Houston-Dallas sample that already

limits the analysis to camera intersections is better balanced than the non-

trimmed Houston sample, although still differs meaningfully on five of the six

accident characteristics. After trimming with the propensity score, the ac-

cident characteristics are much more similar between treatment and control

groups in each sample. Appendix Figure 2 shows that the trimmed Houston

red-light-running variables, since the two samples are relatively balanced before trimming
and there are fewer Dallas camera intersections than Houston camera intersections. Our
difference-in-difference model estimates are similar when we use other logit specifications to
select the estimation samples (although the sample sizes are smaller).
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sample also has reasonable geographic balance in the location of the treatment

and control intersections.

In the engineering characteristics, greater differences arise. These char-

acteristics are not included in the propensity score matching model. Never-

theless, the magnitude difference for the engineering characteristics between

control and treatment intersections is generally not large in absolute terms. For

example, the speed limit is about three miles per hour greater for the treat-

ment group. The one exception is whether an intersection is on a frontage

road. A concern could be that drivers might react differently to camera inter-

sections located on frontage and non-frontage roads. In robustness analysis,

we consider a Houston sample comprised only of frontage road intersections.

Our model estimate for how the camera program affects the number of total

accidents using the Houston frontage road sample is nearly identical to the

estimate using our main Houston sample.

Figure 5 shows the difference between accident levels in treatment and

control accidents for angle (left) and non-angle (right) accidents in the Hous-

ton (top) and Houston-Dallas (bottom) samples. The plotted coefficients are

from a regression with year fixed effects and the interaction of year fixed ef-

fects with treatment status. The coefficients are normalized relative to 2010.

The standard errors from the regression are used to plot the shaded 95% con-

fidence intervals. For example, the lower right plot shows the difference in

accidents at treatment and control intersections for non-angle accidents in the

Houston-Dallas sample. The difference is roughly constant in the three years

before treatment, which indicates parallel pre-removal trends, and supports

the key difference-in-differences identifying assumption. The relative gap be-

tween treatment and control becomes negative after 2010. This provides initial

evidence that the number of non-angle accidents decreased at camera inter-

sections when the cameras were turned off. The appendix includes a similar

figure for total accidents and injury accidents.

Figure 6 panel A shows the pre-referendum level of angle (y-axis) and non-

angle (x-axis) accidents for each Houston camera intersection. Intersections in

our Houston sample are marked with the black symbols, and those intersections
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dropped via propensity score trimming with the white symbols. Intersections

with relatively low or relatively high (average 2008-10) accident levels are

dropped from the sample. Overall, about 10% of the camera intersections

average more than 15 angle accidents or 25 non-angle accidents per year. These

intersections are all on frontage roads (triangles).

Figure 6 panel B shows the pre-referendum to post-referendum shift in the

relative composition of angle and non-angle accidents for each camera inter-

section. One potential concern is that the camera intersections in our Houston

sample may respond differently to the camera program than those intersec-

tions dropped from the analysis. Panel B shows that this is not the case. The

shift in the accident composition for camera intersections in our sample (black

symbols) is similar to that for camera intersections not in our sample (gray

symbols), after accounting for yearly accident trends and fixed intersection

characteristics.17 On average, there are fewer non-angle accidents for both the

in-sample (black square) and not in-sample (grey square) intersections after

the cameras are turned off. The size of the reduction is nearly the same for

both groups of intersections. There is a small increase in angle accidents for

the in-sample intersections, while there is essentially no change in the number

of angle accidents for those intersections not in-sample.18

6 The Effect of Removing Red-light Cameras

6.1 Difference-in-Differences Model

We specify our baseline model as

17The figure plots the difference in accident residuals. We calculate the intersection points
in three steps. First, we separately estimated a panel regression with the level of angle acci-
dents or non-angle accidents as the dependent variable and year and intersection fixed effects
as the dependent variables. Second, we calculate the average pre-referendum (2008-10) and
post-referendum (2011-14) residual for each intersection. Third, we subtract the average
pre-referendum residual from the average post-referendum residual for each intersection.

18Appendix Figure 4 shows the same figure for Houston intersections in the Houston-
Dallas sample. The average shift in accidents for in-sample and not in-sample Houston
intersections in our Houston-Dallas is very similar to Figure 6.

21



yit = β0 + β1Ti + β2Rt + δ1Ti ∗Rt + αi + vt + εit, (4)

where yit is a particular outcome for intersection i in year t. The outcomes

we focus on in the paper are total accidents, type of accident (right angle,

non-right angle), whether the accident results in an injury, and ADT at the

intersection. Ti is an indicator variable that equals one if the intersection is

in Houston and receives a red light camera. Rt is a post-referendum indicator

variable that equals one if the panel observation is from 2011-2014. δ1 is the

parameter of interest and represents the treatment effect of shutting off the

cameras. The model controls for intersection fixed effects αi and year fixed

effects vt. Standard errors are robust to heteroskedasticity and are clustered at

the intersection level. We also show a second measure of statistical precision

from running a series of permutation tests (randomized inference).19

The accident information are count data. As such, we estimate the model

using a Poisson regression and maximum likelihood estimation. The estimated

coefficients can be interpreted as semi-elasticities. We also estimate the model

using OLS, which provides very similar (percent change) results. An assump-

tion of the Poisson model is the equivalence between the conditional mean and

conditional variance. However, the use of robust standard errors relaxes this

assumption (DeAngelo and Hansen [2014]).

Table 2 shows that, overall, the accident characteristics are well-balanced in

both of the trimmed Houston-Dallas and Houston estimation samples. Never-

theless, there are some differences in the means between treatment and control

intersections. For this reason, as a robustness check we also estimate a model

that weights the regression by the inverse of the propensity score (Manski and

19For each sample and outcome, we randomly allocate the intersections into the treatment
and control groups (conditional on the maintaining the original group sizes) and calculate
the estimated coefficient using our model. We repeat this process 10,000 times for each
sample and outcome, and use these results to construct confidence intervals and probability
values. The tables display the probability value (in brackets) for the null hypothesis that
each coefficient is equal to zero, and for the null hypothesis that the angle and non-angle
coefficients are equal.
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Lerman [1977]; Hirano et al. [2003]). If the propensity score correctly predicts

the probability of treatment, then weighting the regression will balance the

composition of the covariates that determine treatment.

The key identifying assumption is that the post-referendum trend for the

dependent variable (e.g., angle accidents) for the control intersections is a valid

counterfactual for what would have occurred at Houston camera intersections

had there been no referendum. The similar pre-referendum trends (2008-2010)

shown in figure 5 supports this assumption.

A specific concern regarding the identifying assumption is that a camera

program could alter driving behavior at non-camera intersections. Economic

theory predicts that some drivers will engage in averting behavior. The longer

expected travel times on roads with cameras, along with the higher likelihood

of a fine, may lead some drivers to avoid traveling through the camera inter-

sections. If this occurs, then the shift in traffic would likely lead to more acci-

dents at non-camera intersections, and our Houston sample estimates should

be viewed as an upper bound on the number of accidents prevented under

electronic monitoring. At the same time, if there is uncertainty about the

location of the cameras then drivers may adjust their behavior citywide, as in

Ayres and Levitt [1998]. If individuals drive slower near all intersections under

a camera program (an increase in precautionary driving), then our Houston

sample estimates should be viewed as a lower bound.

A partial test of spillovers using Dallas control intersections suggests that

treatment spillovers to the control intersections are small. Our Houston-Dallas

sample uses control intersections from a different city where there is no reason

to expect any spillover effect. These results (see next section) are similar to

our Houston sample results.20

20If anything the Houston-Dallas sample estimates imply a larger net increases in accidents
under a camera program. This comports with our view that the averting behavior effect
is likely to be larger than the precautionary driving effect. There are at least two reasons.
First, Houston posted traffic signs (on all approaching roadways) that indicated the exact
location of each camera. Second, we exclude nearby control intersections within a half-mile
of a camera intersection from the analysis.
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6.2 Traffic Accidents

Table 3 shows the coefficient of interest for the effect of ending the camera pro-

gram on accident levels using the difference-in-differences model. Panels A and

B show estimates for the Houston and Houston-Dallas samples, respectively.

We estimate each model separately for angle accidents (column 1), non-angle

accidents (column 2), and total accidents (column 3).

We find support for the three main predictions of the behavior model in

section 2. First, the model predicts differing treatment effects for the two types

of accidents. We can reject equivalence between the coefficient estimates for

angle and non-angle accidents. In the Houston sample, the probability value

for a null hypothesis that the angle and non-angle accidents are equal is 0.000.

Second, the model predicts that electronic monitoring will lead to an in-

crease in non-angle accidents. Non-angle accidents will increase when there

are cameras as drivers will trade off a higher accident risk from stopping with

the higher expected fine from continuing. When the camera program ends, we

estimate a statistically significant decrease in non-angle accidents of 19% in

the Houston sample and 31% in the Houston-Dallas sample.21

Third, the model predicts that the reduction in red-light running under the

camera program will lead to fewer angle accidents. The size of the reduction in

angle accidents will depend on the accident risk of the vehicles that had been

running a red light. Previous studies find that, without electronic monitoring,

the majority of vehicles running a light do so just after the light turns red,

when there is a low accident risk (e.g., Yang and Najm [2007]). We find modest

evidence that the camera program reduced angle accidents. If the electronic

monitoring program had been effective at reducing the number of accidents,

then we would expect to observe an increase in the number of angle accidents.

The coefficient estimate of 26% is economically and statistically significant in

the Houston sample, but is nearly zero in the Houston-Dallas sample.

There is no evidence that electronic monitoring decreased the number of

21In robustness analysis we divide the non-angle accidents into five subgroups: head on,
single vehicle, turning, rear end, and other. Appendix Table 5 shows that the reduction in
non-angle accidents is mostly attributable to a reduction in rear end accidents.
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total accidents. The model in section 2 shows that that the predicted effect on

total accidents is ambiguous and depends on the offsetting effects of the two

accident types. We estimate negative and statistically insignificant coefficients

for the change in total accidents in our Houston (-4%) and Houston-Dallas (-

19%) samples.22 A change in the percentage of non-angle accidents has a larger

impact on the overall change in total accidents, since there are nearly twice as

many non-angle accidents as angle accidents at an intersection (Table 1 panel

B).

Finally, we conduct heterogeneity analysis for the change in angle and

non-angle accidents based on the time of day and the day of week (Appendix

Tables 6 and 7). We estimate our model on the subset of accidents occurring

during three different daily time periods (day: 9AM-4PM, night: 7PM-7AM,

and rush hour: 7-9AM and 4-7PM), and two day of week groupings (weekday,

weekend). In our Houston sample, all but one of the angle accident coefficients

are positive, while five of the six non-angle coefficients are negative. Overall,

the estimates are imprecise. Only three of the 12 estimated day of week by

time of day coefficients are statistically significant at the 5% level. The largest

estimated increase is for angle accidents during the week at night (39%), and

the largest estimated decrease is for non-angle accidents on the weekend during

rush hour (-47%).23

6.3 Injury Accidents

We do not find any evidence that electronic monitoring led to a reduction in

total accidents. However, it is possible that the change in the composition of

22In robustness analysis we estimate a 2nd Houston sample selected via a logit model
that considers pre-program (rather than pre-referendum) accident characteristics. The point
estimate for the estimated effect on the number of total accidents (-3%) is very similar to
that from our main sample.

23The empirical bayes model leads to extremely precise estimates even when the sample
includes just a handful of camera intersections (e.g. Shin and Washington [2007]; Garber
et al. [2007]). As such, studies that use the EB model often report precise heterogeneity
estimates along a number of dimensions. However, the EB model prioritizes model precision
at the expense of producing estimates robust to mean reversion. Please refer to Section 3
and Appendix Section 1 for a lengthy discussion of this point.
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accidents under the camera program could result in more injury accidents. Ta-

ble 1 shows that the typical angle accident is more dangerous than the typical

non-angle accident. Moreover, estimating the effect on injuries is important

for understanding the overall welfare effect of the camera program.

Table 4 shows estimation results for the effect of ending the camera program

on the number of accident-related injuries using our difference-in-differences

model. An “injury accident” includes one or more reported injuries or deaths

(i.e., excluding the unknown and possible injury categories). We separately

estimate the effect for injury accidents, incapacitating injury accidents, and

non-incapacitating accidents. Columns (4)-(6) use the number of annual re-

ported accident-related injuries for each intersection as the dependent variable.

These specifications reflect the fact that accidents with multiple people injured

are more harmful than accidents in which only one person is injured. We sep-

arately analyze different types of injuries to account for the large difference

in the economic costs associated with the severity of an injury (e.g., Shin and

Washington [2007]; Blincoe et al. [2015]).

There is no evidence that the electronic monitoring led to fewer accident-

related injuries. Estimates from the Houston sample suggest that the camera

program may have increased injuries. The point estimates are all negative after

the program ends, and are marginally statistically significant for a reduction

in injury accidents. Estimates from the Houston-Dallas sample imply that the

overall change in injuries is close to zero.

While the estimated percent change is economically large in some models,

the overall change in the number of injury accidents is modest. For example,

a decline of 32% in injury accidents (Panel A, column 1) corresponds to a

decrease of approximately 29 injury accidents per year across all camera inter-

sections in Houston after the camera program ends, or about one fewer injury

accident per 44 million vehicles passing through a camera intersection.24

24We calculate the change in the implied number of accidents by taking the product of
the point estimate (-.318), the yearly mean for all treated intersections in the trimmed
sample from table 2 (1.38), and the number of camera intersections (66). We calculate
the reduction in the accident rate as the total amount of annual vehicle traffic at camera
intersections divided by the number of avoided injury accidents: (52, 475 ∗ 365 ∗ 66)/29.
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6.4 Average Daily Traffic

The installation of cameras could lead drivers to change where they drive in

addition to how they drive. Drivers may choose to alter their driving routes

to avoid intersections with cameras as a means to save time or to avoid fines.

Appendix Table 8 provides some evidence on how average daily traffic at an

intersection changes after electronic monitoring ends.

We estimate a simple OLS difference-in-differences model (equation 4 with-

out the fixed effects) for the subset of intersections in our Houston sample

that have one pre-referendum and one post-referendum ADT observation. We

estimate the model with and without propensity score weights.25 The four

estimates imply increases in traffic at Houston camera intersections after elec-

tronic monitoring ended of between 4% and 18%. None of the estimates is

statistically significant. We interpret these estimates as suggestive evidence

that there may have been a small shift in driving patterns. An increase in

traffic at treatment intersections after the referendum would imply an upward

bias on the accident estimates in Section 5.2. The positive accident point esti-

mates would overestimate the true effect, while the negative estimates would

be an underestimate and biased towards zero.26

6.5 Robustness Analysis

Table 5 shows four robustness specifications. The relevant comparisons are

the estimates for accidents in table 3, panel A and injuries in table 4, panel A.

Panel A shows OLS estimates that suggest a percentage change and statis-

tical significance similar to those using the Poisson model. Panel B drops 2011

25We use the same propensity score weights as those used in the accident analysis.
26There are a number of caveats to the ADT estimates. First, ADT is not measured

in the same years for all intersections. Pre-referendum ADT values are measured between
2007-2010, while post-referendum values are measured between 2011-2014. Second, the data
are only available for a subsample of intersections in Houston. Third, there is no way to
observe whether the ADT trends are similar between treatment and control intersections
prior to electronic monitoring. Finally, if there is measurement error in the interpolation
procedure used to assign the ADT data to intersections (see Appendix for details), then the
ADT estimates are likely to be attenuated towards zero.
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accidents from our analysis. The Houston cameras were temporarily turned

back on for one month in 2011 in response to a court ruling that Houston

had breached its contract with a private company by turning off the cam-

eras. The results are similar regardless of whether we include 2011 data in our

post-referendum period.

Panel C estimates our model using inverse propensity score weighting

(Manski and Lerman [1977]; Hirano et al. [2003]). Overall, table 2 shows that

the accident characteristics are well-balanced. There are, however, slightly

more non-angle accidents at camera intersections than non-camera intersec-

tions during the pre-referendum period (and therefore slightly more total ac-

cidents at camera intersections). If the propensity score correctly predicts

the likelihood that a Houston intersection has a camera, then reweighting by

the propensity score will eliminate selection bias. On the other hand, if the

propensity score is not correctly specified, then reweighting could exacerbate

underlying selection differences (Freedman and Berk [2008]). We do not know

the exact selection rule used by Houston officials and view the propensity

score as approximating the selection criteria. As such, our preferred specifica-

tion does not weight by the propensity score. Nevertheless, our estimates are

similar under inverse propensity score weighting.

Panel D estimates the model on a sample that only includes frontage road

intersections. One potential concern in our main analysis is the lack of frontage

road balance between our treatment and control samples. Camera intersections

are much more likely to be located on frontage roads. Panel D uses a frontage

road sample that does not condition on having ADT information for each

intersection. Overall, we estimate a very similar effect on total accidents (-

6%) as in our main Houston sample (-4%). Neither estimate is statistically

different from zero.27

Our strategy to estimate the effect of the cameras on the number of ac-

cidents is to use the voter referendum as a natural experiment. At the same

time, since our panel of accident data begins in 2003, we are also able to

estimate the introduction of the Houston cameras in 2006 and 2007. We esti-

27Appendix Section 3.2 provides supporting documentation on the frontage road sample.
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mate a difference-in-differences model on two different samples using camera

introduction as the treatment. The samples differ based on how we use a

propensity score model to select the samples. The estimates imply that turn-

ing on the cameras reduced the number of overall traffic accidents by about

30%. This finding is in contrast to our camera removal estimates that leverage

the exogenous referendum.28

However, the introduction results are not too surprising given our results

from a placebo camera program simulation analysis. An analysis of the intro-

duction of a placebo camera program using a difference-in-differences model

suggests that there is a large (39% to 58%) and statistically significant reduc-

tion in total accidents attributable to a (non-existent) camera program. As

with the actual Houston camera program, placebo “treatment” intersections

are selected based on the level of intersection accidents in the years just prior

to the program. In our view, these results highlight the challenge in overcom-

ing the mean reversion bias caused by estimating a model where treatment is

the endogenous camera introduction.29

7 Social Welfare Analysis

7.1 Conceptual Framework

In this section we outline a framework to interpret how electronic monitoring

at traffic intersections affects social welfare. Our discussion closely follows

Chalfin and McCrary [2018].30

We assume that there are n identical individuals, all of whom drive, and

28Appendix Section 3.1 provides details on the introduction analysis.
29Appendix Section 1.3.1 describes the placebo program simulation in detail.
30There are four main differences between the models. First, Chalfin and McCrary [2018]

model the size of the police force. Second, our model includes the cost of travel time delays
associated with the camera program. Third, our model includes the marginal benefit of
revenue raised through fines levied on individuals breaking the law (as compared to other
fiscal revenue sources). Fourth, we use the model to evaluate the extensive margin of having
a camera program (66 Houston cameras cover at most 7% of the city’s major intersections
(see table 2)). As such, we consider the social welfare comparative static derived from the
model as an approximation.
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that the social planner maximizes the expected utility of the representative

agent. Let φj(R) be the probability of experiencing accident outcome j (i.e.

fatality, injury, vehicle damage) when a city has R red light cameras. Define

kj as the average cost of outcome j. We write expected accident costs as

C ≡ C(R) =
∑N

j=1 kjφj(R).

Time delays associated with the camera program, T , are an additional

cost. We model the cost of the time delay as T ≡ T (R) = σwmR, where w

is wage, m are the average number of minutes delayed per person per camera,

and σ is a multiplier on the value of a driver’s time. Multiplier σ captures two

effects: the fraction of the wage at which a driver values travel time, and a

delay multiplier that reflects the observation that travelers dislike waiting in

traffic (e.g. Parry and Small [2009]; Anderson [2014]).

Define y(R) = A − τ as consumption when there are no direct accident-

related costs. A is assets and τ is the per-person lump-sum tax equal to the cost

of running the camera program. Let τ = (rR)/n, where r is the per camera

cost of the program and n is the city’s population. Importantly, we define r as

the per camera administrative cost less the benefit of raising revenue via lump

sum camera fines. The camera program introduces a new means for a city to

raise revenue that avoids the negative marginal welfare effects of other fiscal

taxes (e.g. income, sales, and property). We assume that every dollar raised

via the camera program reduces a dollar raised via other distortionary fiscal

taxes. Barrage [2016] surveys the literature on the marginal cost of public

funds (MCF) and calculates that a dollar raised via fiscal taxes has a MCF

of 1.49. In our analysis, for every dollar raised by the camera program, we

subtract 49 cents from the cost of running the program.

V (R) = y(R)− C(R)− T (R) (5)

Social welfare is maximized when the first derivative of equation 5 is zero.

Social welfare will improve under an expansion of the electronic monitoring

program if V ′(R) > 0. We can use this first order condition to derive a simple

comparative static, equation 6, to evaluate whether a change in the number
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of cameras is welfare improving.31

|ε| > rR + nT

nC
(6)

ε =
∑N

j=1 kjφj(R)εj∑N
j=1 kjφj(R)

is an aggregate elasticity equal to the cost-weighted sum

of the accident outcome elasticities εj. The right hand side of the inequality

is a ratio of the total dollar costs under electronic monitoring to the total

expected accident costs. Electronic monitoring of traffic intersections improves

welfare if it passes the cost-benefit test in equation 6. The cost-weighted

improvement in accident safety under electronic monitoring must exceed the

ratio of program costs to accident costs in order for electronic monitoring to

be welfare improving.

The camera program should be revised or suspended if ε > 0, or if ε < 0

but does not satisfy equation 6. When ε > 0, electronic monitoring increases

accident costs (i.e., the benefit is negative). One exception to the decision

rule given by equation 6 is if the improvement in accident safety (ε < 0) does

not satisfy the inequality, but the program allows for other law enforcement

resources (e.g., police officers) to be used more effectively. We return to this

possibility after evaluating the baseline model.

7.2 The Houston Camera Program and Social Welfare

Appendix Table 11 shows camera program and traffic accident statistics for

Houston. The information in the table can be used, along with equation 6, to

evaluate whether the camera program had positive welfare effects.

The average annual cost to operate each camera in 2009 and 2010 (exclud-

ing fixed costs) is $85,000. As discussed above, this is a “net” cost that takes

into account the estimated welfare value of raising revenue from a lump sum

tax. We follow the recent literature and set the value of a driver’s time at half

the average wage (Anderson [2014]). In our conservative baseline analysis we

31We assume that all citizens drive and that each driver is a potential offender and victim,
utility is linear (Chetty [2006]), and φj is differentiable and strictly convex. The key step
in solving for equation 6 is multiplying the first order condition by R/C.

31



do not take into account evidence that individuals value their time more when

stuck in traffic (Small and Verhoef [2007]), or recent research suggesting that

the value of time may be non-linear and substantially higher in urban areas

during rush hour traffic (Bento et al. [2017]).

We calculate the number of minutes delayed by multiplying the length of

the average red light at one of the 66 camera intersections by the estimated

number of additional vehicles that stop under the camera program (rather

than continue through the light). Our baseline estimate is very conservative

as it is estimated only off of red light violations and assumes that no vehicles

stop rather than pass through the yellow light. The accident injury risk rates

are calculated over the camera intersections using data for the two years prior

to the referendum that shut off the cameras. We estimate the accident-related

injury elasticities using our difference-in-differences model. Accident injury

costs are provided by the National Highway Traffic Safety Administration and

include direct injury costs (e.g., hospital), economic costs (e.g., lost wages),

and quality-of-life costs (Blincoe et al. [2015]). We use the Department of

Transportation’s recommended value of statistical life, $8,860,000, as the cost

of a fatal accident (Blincoe et al. [2015]). The expected annual accident cost

for a Houston resident attributable to the 66 camera intersections during the

last two years of the camera program is $73. Eighteen percent of this figure is

the result of the four fatalities at these intersections during this period.32

The top panel in Table 6 shows the cost-weighted elasticity using the injury

coefficients from our model. The cost-weighed elasticity is 0.139 when we use

our point estimates. In other words, our point estimates imply that the camera

program led to an increase in accident injury-related costs and had a negative

welfare effect–even before accounting for the costs of running the program.

The injury estimates, though, are imprecise. The 90% confidence interval for

the cost-weighted elasticity is [-0.202, 0.479].

32All dollar estimates in the table are in 2010 $. We multiply our regression point estimates
by -1 to make the elasticity estimates more intuitive (since we estimate the response to a
reduction in cameras, i.e., ending the program). We assume that the fatality elasticity is
the same as for incapacitating injuries. The appendix provides further details on how each
statistic is calculated and additional information on the data sources.
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The bottom panel of Table 6 shows several different program cost to acci-

dent cost ratios. Recall that the camera program is welfare improving if the

absolute value of the cost-weighted injury elasticity is greater than the ratio of

program cost to accident costs. Our conservative baseline cost ratio is 0.163.

If we evaluate social welfare using the lower bound of the 90% confidence in-

terval and the conservative cost ratio then we would conclude that the camera

program is welfare improving (| − 0.202| > 0.163).

However, the baseline cost ratio makes two assumptions that bias towards

concluding that the camera program improves welfare. First, the baseline cost

ratio calculates the number of vehicles stopping under a camera program as

only those vehicles that would have run a red light. The ratio increases to

0.267 when we assume that there are just as many vehicles stopping under

the camera program that would have passed through the intersection while

the light was still yellow. Second, if we follow the previous literature and

incorporate a value of time delay multiplier (for time spent sitting in traffic)

then the cost ratio increases to 0.247 from the baseline value.33 If we adjust

our baseline cost ratio by including both deterred yellow light vehicles and

the delay multiplier then the cost ratio becomes 0.435. We view each of the

alternative cost ratios as more realistic and comprehensive as compared to

our conservative baseline cost ratio. These comprehensive cost ratios provide

greater evidence that the Houston camera program did not improve social

welfare. The camera program fails to improve welfare if we use the 90% lower

bound estimate for the cost-weighted elasticity.34

The welfare analysis is fairly insensitive to how we handle fatalities. On

average, there are two fatalities per year during the program and two fatalities

per year after the end of the program. The welfare conclusion remains un-

changed, whether we use a lower VSL estimate, or completely ignore fatalities

33We follow Anderson [2014] and Parry and Small [2009] and use a value of 1.8 for the
delay multiplier. In our setting, the additional travel time occurs from waiting in traffic at
a red light. As such, we can capture the delay multiplier in the same parameter as the value
of time, and σ = 1.8 ∗ 0.5 = 0.9.

34If we incorporate yellow light vehicles and the delay multiplier then the camera program
fails to improve welfare using the 95% lower bound estimate for the cost-weighted elasticity
(| − 0.268| < 0.435).
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in equation 6. Appendix Table 12 shows how the cost-weighted elasticity esti-

mates and the program cost to accident cost ratios change when we vary the

values used for key parameters. For example, assuming that the red light wait

times or the annual change in the number of cars waiting are one standard de-

viation lower leads to a somewhat more favorable view of the camera program

(but contradicts the traffic data used to set the baseline values). Nevertheless,

we still conclude that the camera program did not improve social welfare at

the 90% confidence level when we use these lower values in our most compre-

hensive program cost to accident cost ratio estimate (Table 6 row (c)). The

larger challenge to analyzing social welfare is that the year-to-year variability

in traffic accidents, when combined with the low frequency of the most costly

injuries, lead to imprecise regression estimates.

Finally, it is possible that an electronic monitoring program could fail to

satisfy equation 6, but still improve social welfare for the city. This scenario

would include, for example, a reduction in cost-weighted accident injuries,

and a reallocation of the law enforcement personnel previously dedicated to

intersection monitoring to another welfare improving activity.35

There is no evidence of a significant reallocation of police resources related

to traffic signal enforcement after the Houston camera program ends. The

average number of red-light running citations issued by police per year during

the last three years of the camera program (2008-2010) is 18,738. In the

subsequent four years, law enforcement personnel issued an average of 16,998

tickets per year (2011-2014). The 9% reduction in citations implies that, if

anything, police reallocate time away from monitoring intersections when the

camera program ends.

8 Conclusion

Electronic monitoring of traffic intersections is a common policy to enforce

traffic laws in the US. The stated goal of red-light camera programs is to reduce

35The welfare gain from the new activity would need to be larger than the gap between
the left and right hand sides of equation 6: rR+nT

nC − |ε|.
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cross road collisions and to improve public safety. However, a simple crime

deterrence model predicts that a camera program will decrease angle accidents,

while increasing non-angle accidents. An increase in non-angle accidents under

a camera program is not an incidental or anomalous outcome. The underlying

mechanism is that drivers will knowingly trade off a higher accident risk from

stopping in order to avoid the expected fine of running a red light. Whether

a camera program improves safety is an empirical question.

One challenge in estimating the effect of electronic monitoring on vehicle

accidents is that intersections with cameras are likely to be among the most

dangerous intersections in the city. Moreover, the start of electronic surveil-

lance is endogenous and could follow a spike in accidents at the intersection.

We show that both empirical challenges are true in Houston, TX.

We estimate a difference-in-differences model using 12 years of geocoded

police accident data and find evidence that angle accidents increased and non-

angle accidents decreased in Houston after ending the camera program. We

avoid the endogenous start of a camera program by examining driver behavior

after the cameras are unexpectedly shut off via a voter referendum. The effect

on total accidents is close to zero and statistically insignificant. We adapt the

social welfare model of Chalfin and McCrary [2018], which allows us to incor-

porate the fact that some types of accidents are more dangerous than others.

The social welfare impact of Houston’s camera program is negative when we

use the accident-related injury point estimates from our preferred model. We

conclude, with approximately 90% certainty, that the Houston program did

not improve social welfare. Nevertheless, the year-to-year variability in traffic

accidents within a city, combined with the low frequency of the most serious

injuries, makes definitive analysis of social welfare difficult.
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10 Figures and Tables

Figure 1: Average Yearly Accidents and Injury Accidents
by Distance from an Urban Intersection
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The figure plots average yearly total accidents and injury accidents by distance from a
Houston intersection in 100-foot bins within 50 feet of a road for the years 2003-2014.
The data include all accidents classified as “in or related” to the intersection by the police
who recorded the accident. An “injury accident” includes one or more non-incapacitating
injury, incapacitating injury, or death. The figure does not control for the fact that many
of the accidents that are farther away from the reference intersection may be less than 200
feet from another intersection. Data sources: Texas Department of Transportation.
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Figure 2: Red Light Citation Rates
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Panel A: Citations at Houston Camera Intersections
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Panel B: Camera Citations at Dallas Intersections

Panel A plots the number of annual (fiscal year) red-light-running citations at the 66 Houston
camera intersections from 2008-2014. 2008 and 2009 include both camera initiated citations
and citations from law enforcement officials. The points for 2010-2014 are for after the
camera program ended and include only law enforcement citations. Missing from the figure
are the camera citations for the first four months of fiscal year 2010 (July-October). To our
knowledge, these data were never made public. Panel B plots the number of annual camera
citations by intersection and years since installation for Dallas camera intersections. The
figure reports citation data from two cameras for year one, 37 for years two to five, and 29
for year six. Fiscal year reports with camera citation information are not available (or not
usable) for all years of the Dallas program. See the data appendix for details. Data sources:
City of Houston, Texas Department of Transportation.
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Figure 3: Camera Referendum Media News Story Frequency and
Google Search Interest
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Red Light Camera Annise Parker

The three panels display the counts of newspaper stories (top), broadcast news stories
(middle), and Google online search interest (bottom) in red light cameras as compared to
Houston’s newly elected mayor. Annise Parker, Houston’s first openly LGBT mayor, was
elected in a run-off election 11 months before the referendum in December 2009. The top
two panels plot the number of monthly news stories in the month of the referendum (month
0) and in each of the 24 months before/after the referendum. New stories include the phrases
“red light camera” or “Annise Parker.” The bottom panel shows the Google trends measure
of interest in the same two terms. A value of 100 indicates peak popularity, whereas a score
of 50 means the term is half as popular. Data sources: Houston Chronicle, Google trends,
Metro Monitor. 44



Figure 4: Intersection Vehicle Accident Trends
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Panel B: San Antonio

The figure plots the average total number of vehicle accidents per intersection by year from
2003-2014. Panel A plots accident levels for the 66 Houston camera intersections in our
study, as well as Houston intersections with ADT data and at least one accident during our
panel that did not have a camera. We combine the 20 cameras installed in 2006 and the 46
installed in 2007 into one plot. Panel B plots accident levels for two groups of intersections
in San Antonio, a city without a camera program. We separately plot the 66 most dangerous
intersections from 2003, along with all other San Antonio intersections with ADT data and
at least one accident during our panel. The most dangerous intersections are determined
by assigning each intersection a risk score based on the weighted average of the number of
deaths, incapacitating injuries, non-incapacitating injuries, and non-injury accidents from
2003. The data include all accidents within 200 feet from one of the intersections that are
classified as “in or related” to the intersection by the police who recorded the accident. Data
Source: Texas Department of Transportation.
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Figure 5: Angle and Non-angle Accident Trends for Treatment and
Control Intersections

The figure shows the difference between accident levels in treatment and control accidents
for angle (left) and non-angle (right) accidents in the Houston (top) and Houston-Dallas
(bottom) samples. The plotted coefficients are from a regression with year fixed effects and
the interaction of year fixed effects with treatment status. The coefficients are normalized
relative to 2010. The standard errors from the regression are used to plot the shaded 95%
confidence intervals. Data source: Texas Department of Transportation.
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Figure 6: Angle and Non-angle Accidents by Camera Intersection

0
10

20
30

40
A

n
g

le
 A

cc
id

en
ts

0 10 20 30 40
Non-angle Accidents

In-sample, Frontage Not In-sample, Frontage

In-sample, Not Frontage Not In-sample, Not Frontage

Panel A: Level of Pre-Referendum Accidents
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Panel B: Post-Referendum Shift in Accidents

Panel A shows the pre-referendum level of angle (y-axis) and non-angle (x-axis) accidents
for each Houston camera intersection based on whether the intersection is included in the
Houston estimation sample, and by whether the intersection is on a frontage road. Panel
B plots the pre-referendum to post-referendum shift in the level of angle and non-angle
accidents for each camera intersection, after accounting for yearly accident trends and fixed
intersection characteristics. 47



Table 1: Accident and Injury Descriptive Statistics

Average Yearly Statistics (1) (2) (3)
Accident Type: All Angle Non-angle

Total Accidents 
Number of Accidents 77,552 16,233 61,319
Fraction of Accidents by Type 1.00 0.21 0.79
Number of Fatalities 231.00 35.67 195.33
Fraction "In or Related to" Intersection 0.34 0.77 0.23

Injury Accidents, Fraction by Severity 
Fatality 0.003 0.002 0.003
Incapacitating Injury 0.016 0.020 0.015
Non-Incapacitating Injury 0.067 0.090 0.061
Possible Injury 0.265 0.351 0.242
Unknown Injury 0.290 0.141 0.329
No Injury Classification 0.359 0.397 0.349

Total Accidents 
Number of Accidents 1,598 625 973
Fraction of Accidents by Type 1.00 0.39 0.61
Number of Fatalities 2.00 2.00 0.00

Injury Accidents, Fraction by Severity 
Fatality 0.001 0.002 0.000
Incapacitating Injury 0.020 0.029 0.015
Non-Incapacitating Injury 0.087 0.121 0.065
Possible Injury 0.317 0.390 0.270
Unknown Injury 0.207 0.126 0.259
No Injury Classification 0.368 0.332 0.391

Panel B: Houston Sample Intersection Accidents 

Panel A: All Houston Accidents 

The table shows average yearly accidents in Houston for the three years before the camera
program (2003-2005). Panel A displays statistics for all accidents, while panel B displays
statistics only for intersection accidents in our main Houston panel. There are six acci-
dent injury designations: fatality, incapacitating, non-incapacitating, possible, unknown,
none. The categories are mutually exclusive. If there are multiple individuals injured in
an accident, the accident designation corresponds to the most severe injury. Source: Texas
Department of Transportation.
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Table 2: Sample Accident Intersection Characteristics

(1) (2) (3) (4) (5) (6)
Treatment Control Difference/SD Treatment Control Difference/SD

Accident Characteristics 
Total 20.64 3.09 2.47 16.56 12.68 0.59
Angle 7.78 1.14 2.09 5.21 4.67 0.16
Non-angle 12.86 1.95 2.37 11.35 8.01 0.60
Injury 1.89 0.34 1.59 1.38 1.03 0.27
Red-light Running 6.43 0.74 2.11 3.93 3.55 0.15
Average Daily Traffic 55,268 29,705 1.42 52,475 48,864 0.16
Engineering Characteristics
Frontage Road 0.82 0.01 3.31 0.75 0.04 1.50
Lanes 7.33 4.20 1.82 7.03 6.06 0.58
Speed Limit 39.93 33.32 1.37 39.75 36.06 0.81
Divided 0.92 0.70 0.49 0.97 0.89 0.28

Number of Intersections 66 925 32 47

Accident Characteristics 
Total 20.64 11.07 0.69 13.11 10.21 0.33
Angle 7.78 2.93 0.67 4.26 2.75 0.38
Non-angle 12.86 8.14 0.55 8.85 7.46 0.21
Injury 1.89 1.43 0.23 1.21 1.18 0.02
Red-light Running 6.43 2.70 0.58 3.37 2.50 0.26
Average Daily Traffic 55,268 43,881 0.59 53,044 42,175 0.58
Engineering Characteristics
Frontage Road 0.82 0.33 1.02 0.75 0.38 0.76
Lanes 7.33 7.55 -0.16 7.14 7.54 -0.26
Speed Limit 39.93 36.19 0.85 39.75 36.15 0.83
Divided 0.92 0.85 0.25 0.89 0.83 0.17

Number of Intersections 66 33 28 24

All Intersections All Intersections, Trimmed

Panel B: Houston-Dallas Control (2008-2010)

Panel A: Houston Control (2008-2010)

The table shows the means for accident and intersection characteristics for the two samples
before and after propensity score trimming. Houston camera intersections are the treatment
group for both samples. The control groups are Houston non-camera intersections (Panels
A) and Dallas camera intersections (Panel B). The means are taken over the years 2008-2010.
Data sources: City of Houston, Google Maps, North Central Texas Council of Governments,
Texas Department of Transportation.
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Table 3: The Effect on Accidents from Ending the Camera Program

(1) (2) (3)

Dependent Variable: Angle Non-angle Total

Panel A: Houston Sample

After Removal * Treated .258 -.194 -.038

(.131) (.104) (.098)

[0.061] [0.068] [0.702]

Equality of Angle and Non-angle, p-values: 0.000 [0.006]

Treatment Intersections 32 32 32

Control Intersections 47 47 47

Panel B: Houston-Dallas Sample

After Removal * Treated .015 -.312 -.192

(.176) (.137) (.125)

[0.935] [0.040] [0.177]

Equality of Angle and Non-angle, p-values: 0.072 [0.097]

Treatment Intersections 28 28 28

Control Intersections 24 24 24

The table shows the difference-in-differences coefficient of interest for the removal of the
Houston cameras from estimating equation 4 using a Poisson model. The dependent vari-
able is the yearly number of angle (column 1), non-angle (column 2), and total accidents
(column 3). The Houston sample uses Houston non-camera intersections as the control
group. The Houston-Dallas sample uses Dallas camera intersections as the control group.
Both samples include all police-reported, “intersection-related” accidents within 200 feet
of an intersection. Standard errors (in parentheses) are robust to heteroskedasticity and
clustered by intersection. The table also displays probability values (in brackets) from a
permutation test for the null hypothesis that each coefficient is equal to zero. In each panel
we test the null hypothesis that the angle and non-angle coefficients are equal using the clus-
tered standard errors and from a permutation test (in brackets). Source: Texas Department
of Transportation.
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Table 4: The Effect on Injuries from Ending the Camera Program

(1) (2) (3) (4) (5) (6)

Dependent Variable:

Injury Classification: All Incapacitating

Non-

Incapacitating All Incapacitating

Non-

Incapacitating

After Removal * Treated -.318 -.627 -.257 -.149 -.414 -.117

(.171) (.324) (.189) (.221) (.345) (.227)

[0.068] [0.060] [0.182] [0.505] [0.239] [0.614]

Treatment Intersections 32 32 32 32 32 32

Control Intersections 47 47 47 47 47 47

After Removal * Treated .005 -.464 .077 .03 -.451 .103

(.23) (.5760) (.236) (.274) (.597) (.279)

[0.985] [0.418] [0.764] [0.919] [0.446] [0.736]

Treatment Intersections 28 28 28 28 28 28

Control Intersections 24 24 24 24 24 24

Injury Accidents People Injured

Panel A: Houston Sample

Panel B: Houston-Dallas Sample

The table shows the difference-in-differences coefficient of interest from estimating equation 4 using a Poisson model on the Houston
and Houston-Dallas samples. An injury accident includes one or more injuries or fatalities. Incapacitating accidents include a fatality
or incapacitating injury. Non-incapacitating accidents exclude injury accidents with a fatality or incapacitating injury. Columns
(4)-(6) use the number of annual reported accident-related injuries for each intersection as the dependent variable. Standard errors
(in parentheses) are robust to heteroskedasticity and clustered by intersection. The table also displays probability values (in brackets)
from a permutation test for the null hypothesis that each coefficient is equal to zero. Source: Texas Department of Transportation.
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Table 5: The Effect on Accidents from Ending the Red Light
Camera Program–Robustness Specifications

(1) (2) (3) (4)

Dependent Variable: Angle Non-angle Total Injury

Panel A: OLS

After Removal * Treated 1.025 -2.12 -1.09 -.379

(.6880) (.979) (1.385) (.255)

[0.080] [0.016] [0.357] [0.106]

Percent Change 13.2 -16.5 -5.3 -20.0

Equality of Angle and Non-angle, p-value 0.001 [0.000]

Treatment Intersections 32 32 32 32

Control Intersections 47 47 47 47

Panel B: Drop 2011

After Removal * Treated 0.307 -.129 .022 -.275

(.141) (.106) (.103) (.194)

[0.035] [0.228] [0.825] [0.156]

Equality of Angle and Non-angle, p-value 0.001 [0.006]

Treatment Intersections 32 32 32 32

Control Intersections 47 47 47 47

Panel C: Propensity Score Weighted

After Removal * Treated 0.256 -0.239 -.061 -0.356

(.127) (.115) (.101) (.166)

[0.097] [0.069] [0.599] [0.039]

Equality of Angle and Non-angle, p-value 0.000 [0.004]

Treatment Intersections 32 32 32 32

Control Intersections 47 47 47 47

Panel D: Frontage

After Removal * Treated -.137 -.006 -.057 -.298

(.158) (.131) (.132) (.183)

[0.395] [0.965] [0.666] [0.107]

Equality of Angle and Non-angle, p-value 0.818 [0.346]

Treatment Intersections 40 40 40 40

Control Intersections 50 50 50 50

The table shows four robustness specifications. The estimates in this table are comparable
to those from table 3, panel A, and table 4, panel A, column (1). Panel A of this table
estimates the same model using OLS. Panel B excludes data from 2011. Panel C uses inverse
propensity score weighting. Panel D limits analysis to camera and non-camera observations
that are on frontage roads. Standard errors (in parentheses) are robust to heteroskedasticity
and clustered by intersection. The table also displays probability values (in brackets) from
a permutation test for the null hypothesis that each coefficient is equal to zero. In each
panel we test the null hypothesis that the angle and non-angle coefficients are equal using
the clustered standard errors and from a permutation test (in brackets). Source: Texas
Department of Transportation.
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Table 6: The Houston Camera Program and Social Welfare

I. Cost-weighted elasticity estimates  [LHS of Eq. 6]

     Estimate point estimate [90% Confidence Interval] 0.139
[-0.202, 0.479]

II. Program Cost to Accident Cost Ratios [RHS of Eq. 6]

     Conservative baseline 0.163
     More comprehensive alternatives:
          (a) Include deterred yellow light vehicles 0.267
          (b) Include delay multiplier in [σ] (Parry and Small, 2009; Anderson 2014) 0.247
          (c) Incorporate yellow light vehicles and delay multiplier 0.435

The top panel of the table calculates cost-weighted elasticity estimates using the estimated
injury elasticities from our our preferred model. The bottom panel of the table calculates
the program cost to accident cost ratio. Our conservative baseline ratio uses the parameter
values from Appendix Table 11. The baseline cost ratio makes two important assumptions
that bias towards concluding that the camera program improves welfare. In (a) we incor-
porate an estimate for vehicles stopping that could actually have made it through the light
before it turned red. In (b) we follow previous literature and incorporate a value of time
delay multiplier for time spent sitting in traffic. In (c) we take into account both deterred
yellow light vehicles and the delay multiplier.
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