Traffic Safety Program Evaluation: The Empirical Bayes Model and Mean Reversion Bias

Paul Fisher

Independent Researcher

Justin Gallagher Montana State University

A Foolproof Traffic Safety Intervention

Traffic Safety Studies and Regression to the Mean Bias

- Regression to the mean (RTM) bias is a well-known challenge when evaluating traffic safety programs (e.g. USDOT 2023)
 - Roadway safety interventions often occur following years with an unusually high number of vehicle crashes
 - We would expect crashes to fall in subsequent years regardless of a new safety countermeasure (or "treatment")

• Empirical Bayes (EB) Model developed to "correct" for RTM bias (Hauer 2002)

- Standard, widely used model in traffic safety engineering literature
- Model is popular because of belief that it corrects for RTM bias:

e.g. "the empirical Bayes (EB) methodology has been applied for over 20 years [...] The appeal of the methodology is that it <u>corrects</u> for regression to the mean" (Persaud and Lyon, 2014, p1)

 A literature review of peer-reviewed studies in top safety engineering journals shows that the vast majority the studies state that the EB model "<u>corrects</u>", "<u>accounts</u>", "<u>addresses</u>", or "<u>eliminates</u>" RTM bias

EB Model Does Not Correct for RTM Bias

- EB model <u>never</u> fully eliminates RTM bias
- **②** As applied in the literature, EB model usually adjusts for very little RTM bias

• We show this

- (1) Analytically using the EB model equations
- (2) Via a placebo Monte Carlo policy experiment (simulation)
- (3) Running EB model using all vehicle crashes 2003-2022 (20 years) in San Antonio, TX

• We provide recommendations to improve reliability of traffic safety studies

- (1) Diagnostics to evaluate how likely EB model estimates will suffer from RTM bias
- (2) Draw a parallel to early program evaluation literature in labor economics which confronted a similar sample selection problem. Proposed solutions:
 - (i) Transparent analysis of the raw data
 - (ii) Recognition that conventional models do not solve RTM bias
 - (iii) Emphasis on careful sample construction

The EB Model leads to Biased Safety Countermeasure Treatment Effects

2 Sources of Bias in the EB Model

- $\textbf{0} \ \text{Misspecification of SPF in EB Model} \rightarrow \text{omitted variable bias} \rightarrow \text{RTM Bias}$
- **2** Small weights (\hat{w}_i) in EB Model \rightarrow RTM Bias

Intuition for how the EB Model ostensibly corrects for RTM bias

- Treated roadway locations are often selected due to a large number of recent crashes
- A simple before-after model exaggerates the safety benefit
- The EB model adjusts the baseline (pre-treatment) level of crashes to "correct" for natural variation in the number of crashes
- The baseline crash adjustment is done using a model for crashes estimated out-of-sample (*Safety Performance Function, SPF*)
- A new baseline level of crashes at treated locations is calculated using a weighted average (weights, \hat{w}_i) of the actual crashes and the predicted level of crashes

Placebo Simulation Experiment

- The average weight is critical in eliminating RTM bias:
 - ightarrow The EB model can only eliminate RTM bias if $\hat{w_i} = 1$ for all treated locations
- We simulate data with multiple time periods & no actual safety countermeasure
 - $\rightarrow~$ Placebo experiment so the treatment effect should be 0
 - ightarrow Before-After model estimate is -80%
- Follow USDOT: use Before-After model as benchmark to measure effectiveness of EB model at reducing RTM bias

Gallagher EB Model and RTM bias

San Antonio Placebo Intersection-level Analysis

- Use GIS software to identify the yearly count of crashes "in or related to" 624 San Antonio, TX intersections
- Estimate the average treatment effect for a fake intersection-level policy we call "placebo red light camera" program
 - 50 intersections with highest avg number of crashes (2003-2005) are "treated"
 - Control group: 44 intersections with similar underlying crash risk (2003-2022)
 - Average Treatment Effect should be 0

Dependent Variable:	Total Crashes	• -			
Average Daily Traffic	-0.0000026 (0.0000067)				
Risk Proxy	0.077 (0.021)	Effect (%)	Ĩ	Ţ	
Psuedo R-Squared	0.042	유-			
Overdispersion	0.15				-
Avg weight, treated obs	0.139		1	1	
Observations	44	ē-L	Before-After	EB, Equ. 2	EB, .9
		•			

(c) SPF Model for San Antonio, TX

(d) EB Model Placebo Treatment Effect

Summary

- EB model is a widely used model to "correct" for RTM bias
- We show:
 - EB model does <u>not correct</u> for RTM bias
 - Phe standard model that chooses the weights to maximize the efficiency of the EB model estimator adjusts for very little RTM bias
- Our recommendations:
 - (1) Researchers should recognize that the EB model does not correct for RTM bias
 - (2) The EB model will do a better job adjusting for RTM bias when:
 - (i) The SPF explains a large amount of the crash variation
 - (ii) A very high weight is selected for all treated intersections: $\hat{w}_i > 0.9$
 - (iii) Careful selection of the out-of-sample control intersections (ideally via randomization)
 - (3) Consider other models that have been shown to be successful in avoiding RTM bias e.g., difference-in-differences model (Gallagher and Fisher, 2020)